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Abstract

Particle-reinforced rubbers exhibit a marked stress softening during unloading after loading in uniaxial tension tests,

i.e. the stress on unloading is significantly less than that on loading at the same stretch. This hysteretic behaviour is not

accounted for when the mechanical properties are represented in terms of a strain-energy function, i.e. if the material is

modelled as hyperelastic. In this paper a theory of pseudo-elasticity is used to model loading, partial or complete un-

loading and the subsequent reloading and unloading of reinforced rubber. The basis of the model is the inclusion in the

energy function of a variable that enables the energy function to be changed as the deformation path changes between

loading, partial unloading, reloading and any further unloading. The dissipation of energy, i.e. the difference between

the energy input during loading and the energy returned on unloading is accounted for in the model by the use of a

dissipation function, the form of which changes between unloading, reloading and subsequent unloading.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

During the last decade there has been a considerable growth in interest in modelling the mechanical

response of rubbery polymers, and more particularly of particle-filled rubbers. This interest has been

stimulated by numerous industrial applications of rubbers (vibration isolators, vehicle tyres, seals and
shock absorbers, for example) and the availability of computational facilities suitable for running complex

models in finite element software.

Many contributions have aimed to model inelastic behaviour of rubber such as the stress softening

associated with the Mullins effect. These are mainly rate and time-independent models based on the use of

damage theory. Representative examples of these works are the papers by Govindjee and Simo (1991,

1992a,b), extended to allow for viscoelasticity (1992b), Johnson and Beatty (1993, 1995), Lion (1996),
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Huntley et al. (1997), Kaliske and Rothert (1998), Ogden and Roxburgh (1999a,b), Beatty and

Krishnaswamy (2000) and Dorfmann et al. (2002). There are also many contributions dealing with time

and/or rate effects and stress–strain cycling involving hysteresis. Representative works from a lengthy list

include Johnson et al. (1995), Drozdov (1996), Drozdov and Dorfmann (2001), Ha and Schapery (1998),
Reese and Govindjee (1998), Bergstr€oom and Boyce (1998, 2000), Miehe and Keck (2000), Wu and Liechti

(2000) and Yang et al. (2000). The collections of papers contained in the proceedings of the first two

European conferences on constitutive models for rubber are also valuable sources of reference: Dorfmann

and Muhr (1999) and Besdo et al. (2001). Both phenomenological and micro-structural models are rep-

resented in these contributions and for more detailed references we refer to the above-cited works.

The present paper focuses on the quasi-static modelling of the inelastic response of particle-reinforced

rubber. In particular, we are concerned with the hysteretic cycles associated with partial unloading and

reloading (at constant temperature) following loading after appropriate pre-conditioning aimed at elimi-
nating the Mullins effect. Our starting point is the pseudo-elasticity theory of Ogden and Roxburgh (1999a),

which was used to model the Mullins effect. It is adapted so as to model the hysteretic cycles mentioned

above. While the theory is applicable to three-dimensional deformations, the details are described primarily

for the simple tension specialization. Simple tension experiments on a 60 phr carbon black-filled rubber

have been performed for loading, partial unloading, reloading and subsequent unloading in order to test

the theory.

The paper is organized as follows. In Section 2 we summarize the required equations of non-linear

elasticity, first for three dimensions and then for the appropriate homogeneous uniaxial specialization. In
Section 3 the corresponding theory of pseudo-elasticity is outlined. In Section 4, first the specific model of

Ogden and Roxburgh (1999a), with some modification, is reviewed and then adapted so as to capture the

partial unloading–reloading–unloading response. Section 5.1 contains a brief discussion of the experimental

results that are used as the basis for fitting the model. The elastic strain-energy function employed for

describing the loading response (after pre-conditioning) is given in Section 5.2, and then the theory of

Section 4 is used to fit the actual data.

2. Basic equations

For full details of the relevant theory of elasticity summarized in this section the reader is referred to, for

example, Ogden (1984, 2001) and Holzapfel (2000).

We consider a rubberlike solid whose deformation is completely described by the deformation gradient

tensor F. The polar decompositions of the deformation gradient gives

F ¼ RU ¼ VR; ð1Þ

where R is a proper orthogonal tensor and U;V are positive definite and symmetric tensors (the right and

left stretch tensors, respectively).

The spectral decomposition of the right stretch tensor U gives

U ¼
X3

i¼1

kiu
ðiÞ � uðiÞ; ð2Þ

where the principal stretches ki > 0, i 2 f1; 2; 3g, are the eigenvalues of U, uðiÞ are the (unit) eigenvectors,

and � denotes the tensor product. From the incompressibility condition det F ¼ 1 and from (1) and (2) it

follows that

k1k2k3 ¼ 1: ð3Þ
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2.1. Hyperelasticity

For hyperelastic solids there exists a strain-energy function, denoted W ¼ W ðFÞ. The associated nominal

stress tensor for incompressible elastic material, denoted S, is then given by

S ¼ oW
oF

� pF�1; det F ¼ 1; ð4Þ

where p is a Lagrange multiplier associated with the constraint (3) and represents an arbitrary hydrostatic

pressure. The Cauchy stress tensor r is given by

r ¼ FS ¼ F
oW
oF

� pI; det F ¼ 1; ð5Þ

where I is the identity tensor.
The elastic stored energy is required to be objective. Therefore, for all rotations Q we have

W ðQFÞ ¼ W ðFÞ: ð6Þ
Using the polar decomposition (1) and the choice Q ¼ RT in (6) gives

W ðFÞ ¼ W ðUÞ: ð7Þ
Thus, W depends on F only through the stretch tensor U. The (symmetric) Biot stress tensor T is then

defined by

T ¼ oW
oU

� pU�1; det U ¼ 1: ð8Þ

2.1.1. Isotropic hyperelasticity

We now consider isotropic elastic materials, for which we have the restriction

W ðFQÞ ¼ W ðFÞ ð9Þ
for all rotations Q. Bearing in mind that the Q�s appearing in (6) and (9) are independent the combination

of these two equations yields

W ðQUQTÞ ¼ W ðUÞ ð10Þ
for all rotations Q, or, equivalently, W ðQVQTÞ ¼ W ðVÞ. Eq. (10) states that W is an isotropic function of

U. It follows from the spectral decomposition (2) that W depends on U only through the principal stretches

k1; k2; k3. To avoid introducing additional notation we express this dependence as W ðk1; k2; k3Þ; by selecting

appropriate values for Q in (10) we may deduce that W depends symmetrically on k1; k2; k3, i.e.

W ðk1; k2; k3Þ ¼ W ðk1; k3; k2Þ ¼ W ðk2; k1; k3Þ: ð11Þ
Consequences of isotropy are that S ¼ TRT and that T is coaxial with U and hence, in parallel with (2),

we have

T ¼
X3

i¼1

tiuðiÞ � uðiÞ; ð12Þ

where ti, i 2 f1; 2; 3g, are the principal Biot stresses, given by

ti ¼
oW
oki

� pk�1
i ; k1k2k3 ¼ 1: ð13Þ

We also note the connection between the Cauchy stress and T in the form

RTrR ¼ UT ¼ TU ¼
X3

i¼1

kitiuðiÞ � uðiÞ; ð14Þ
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from which it follows that the principal Cauchy stresses ri, i 2 f1; 2; 3g, are given by

ri ¼ kiti ¼ ki
oW
oki

� p; ð15Þ

where p is the arbitrary hydrostatic pressure appearing in (4). There is no sum over i in (15).

2.1.2. Simple tension and compression

The isotropic strain-energy function W depends on the principal stretches according to (11). On use

of the incompressibility constraint (3), it can be written in terms of two independent stretches. Thus, we

write

bWW ðk1; k2Þ ¼ W ðk1; k2; k
�1
1 k�1

2 Þ; ð16Þ

which is symmetric in k1 and k2. Then, from (15) we obtain the Cauchy stress differences

r1 � r3 ¼ k1

o bWW
ok1

; r2 � r3 ¼ k1

o bWW
ok2

: ð17Þ

Eqs. (17) provide a basis for characterizing the form of the energy function using biaxial tests in which k1

and k2 are varied independently. For this purpose and without loss of generality we can set r3 equal to zero.
For the simple tension (or compression) specialization we take k2 ¼ k3, and use the notation

k1 ¼ k; k2 ¼ k�1=2: ð18Þ
The strain energy then depends on the one remaining independent stretch, and we write

eWW ðkÞ ¼ bWW ðk; k�1=2Þ: ð19Þ

Then, the Cauchy stress associated with k1 is

r ¼ r1 ¼ k
d eWW ðkÞ
dk

ð20Þ

and the corresponding nominal (or Biot) stress is

t ¼ r
k
¼ d eWW ðkÞ

dk
: ð21Þ

3. Pseudo-elasticity

3.1. Basic equations

In the theory of pseudo-elasticity developed by Ogden and Roxburgh (1999a) the strain-energy function

W ðFÞ appropriate for elasticity theory is modified by incorporating an additional variable g into the

function. Thus, we write

W ¼ W ðF; gÞ: ð22Þ
In the context of the Mullins effect, which is related to material damage, g is referred to as a damage or

softening variable. The inclusion of g provides a means of changing the form of the energy function during
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the deformation process and hence changing the character of the material properties. In general, the overall

response of the material is then no longer elastic and W ðF; gÞ is referred to as a pseudo-energy function. The

resulting theory is referred to as pseudo-elasticity theory. In this section we summarize the main ingredients

of the theory.
The variable g may be active or inactive and a change from active to inactive (or conversely) effects a

change in the material properties. This change may be induced, for example, when unloading is initiated.

If g is inactive we set it to the constant value unity and write

W0ðFÞ ¼ W ðF; 1Þ ð23Þ
for the resulting strain-energy function. For an incompressible material the associated nominal stress is

denoted S0 and is given by

S0 ¼
oW0

oF
ðFÞ � p0F

�1; det F ¼ 1: ð24Þ

In (24) and in what follows the zero subscript is associated with the situation in which g is inactive.

If g is active we take it to depend on F. The nominal stress is then given by

S ¼ oW
oF

ðF; gÞ þ oW
og

ðF; gÞ og
oF

ðFÞ � pF�1; det F ¼ 1: ð25Þ

Following Ogden and Roxburgh (1999a) we take g to be given implicitly by the constraint

oW
og

ðF; gÞ ¼ 0 ð26Þ

so that the nominal stress then has the form

S ¼ oW
oF

ðF; gÞ � pF�1; det F ¼ 1 ð27Þ

whether or not g is active, where, when g is active the right-hand side is evaluated for g given by (26).

Under the constraint det F ¼ 1, Eq. (26) defines a hypersurface in the resulting nine-dimensional ðF; gÞ-
space to which values of g must be restricted. The hypersurface (26) identifies stationary points of W ðF; gÞ
with respect to g. If g is defined uniquely in terms of F we may write the solution formally as

g ¼ geðFÞ; ð28Þ
and we then use the notation w for the resulting (unique) strain-energy function. Thus,

wðFÞ 
 W ðF; geðFÞÞ: ð29Þ
Thus far we have not specified the form of the dependence of W on g, or, more particularly, the form of

the function geðFÞ in (28), i.e. we have not specified a particular model within the general framework of

pseudo-elasticity. Appropriate specification will be made in Section 4.

3.2. Isotropic material response

When specialized to isotropic response (relative to the selected reference configuration) the pseudo-

elastic energy function (22) takes the form

W ðk1; k2; k3; gÞ; ð30Þ
where ðk1; k2; k3Þ are the principal stretches associated with the deformation from the reference configu-
ration. As in Section 2.1.1, W is a symmetric function of the stretches, which are subject to the incom-

pressibility constraint (3).
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The principal Cauchy stresses ri are given by

ri ¼ ki
oW
oki

� p; i 2 f1; 2; 3g; ð31Þ

as in (15), but (31) applies whether or not g is active. Eq. (26) specializes to

oW
og

ðk1; k2; k3; gÞ ¼ 0; ð32Þ

which gives g implicitly in terms of the stretches.

Since the material is incompressible it is convenient to define the modified pseudo-energy functionbWW ðk1; k2; gÞ bybWW ðk1; k2; gÞ ¼ W ðk1; k2; k
�1
1 k�1

2 ; gÞ; ð33Þ
extending the notation used in (16). Then, on elimination of p from (31),

r1 � r3 ¼ k1
bWW1; r2 � r3 ¼ k2

bWW2; ð34Þ

where bWW1 and bWW2 denote the partial derivatives of bWW with respect to k1 and k2, respectively. Eq. (32) is then

modified to

o bWW
og

ðk1; k2; gÞ ¼ 0 ð35Þ

and hence g is now given implicitly in terms of k1 and k2 only.

We define the function bWW0ðk1; k2Þ viabWW0ðk1; k2Þ 
 bWW ðk1; k2; 1Þ; ð36Þ

which is the isotropic specialization of (23). This is the energy function of an elastic material for which g is

inactive. From (34) the specialization (36) yields the stresses

r01 � r03 ¼ k1
bWW01; r02 � r03 ¼ k2

bWW02; ð37Þ
where the subscript zero again refers to a deformation path on which g is not active and (35) is not ope-

rative. A subscript 1 (respectively 2) following the subscript 0 on bWW indicates partial differentiation with

respect to k1 (respectively k2).
For compatibility with the classical theory bWW0ðk1; k2Þ must satisfybWW0ð1; 1Þ ¼ 0; bWW0að1; 1Þ ¼ 0; bWW012ð1; 1Þ ¼ 2l; bWW0aað1; 1Þ ¼ 4l; ð38Þ

where l ð> 0Þ is the shear modulus of the material in the reference configuration and the index a takes the
value 1 or 2.

When g is active we suppose that Eq. (35) can be solved explicitly for g and, using the notation from (28),

we write

g ¼ geðk1; k2Þ ¼ geðk2; k1Þ: ð39Þ
Then, an energy function for active g, symmetrical in ðk1; k2Þ and denoted ŵwðk1; k2Þ, may be defined by

ŵwðk1; k2Þ 
 bWW k1; k2; geðk1; k2Þð Þ: ð40Þ

From Eqs. (34), (35) and (40) it follows that

ra � r3 ¼ ka oŵw=oka ¼ ka o bWW =oka; a ¼ 1; 2: ð41Þ
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3.2.1. Simple tension

As in Section 2.1.2, for simple tension we take r2 ¼ r3 ¼ 0 and write r1 ¼ r. We also write k1 ¼ k, so
that k2 ¼ k3 ¼ k�1=2, and define eWW byeWW ðk; gÞ 
 bWW ðk; k�1=2; gÞ: ð42Þ

Eqs. (41) and (35) then specialize to

r ¼ k eWWkðk; gÞ 
 kt; eWWgðk; gÞ ¼ 0; ð43Þ
wherein the principal Biot stress t ð¼ t1Þ is defined and the subscripts signify partial derivatives.

By definingeWW0ðkÞ ¼ eWW ðk; 1Þ; ð44Þ
we may deduce from (38) the specializationseWW0ð1Þ ¼ eWW 0

0 ð1Þ ¼ 0; eWW 00
0 ð1Þ ¼ 3l; ð45Þ

where the prime signifies differentiation with respect to k.
This simple tension specialization will be examined in detail in connection with the description of stress

softening in Section 4.

4. A model for unloading and reloading

In this section we use a simple form for the pseudo-elastic constitutive law that was used previously by
Ogden and Roxburgh (1999a) to model the idealized Mullins effect. Here, however, it is assumed that the

Mullins effect is not present (having been removed by pre-conditioning) and we are concerned with

modelling the hysteresis associated with loading–unloading cycles, and more particularly with partial un-

loading and reloading. The material is again taken to be incompressible and isotropic and we use a pseudo-

energy function to represent unloading in the formbWW ðk1; k2; gÞ ¼ g bWW0ðk1; k2Þ þ /ðgÞ; /ð1Þ ¼ 0; ð46Þ
based on ðk1; k2Þ-space. From (37), (41) and (46), the Cauchy stress differences are calculated as

ra � r3 ¼ gka
bWW0a ¼ gðr0a � r03Þ; a ¼ 1; 2; ð47Þ

and Eq. (35) becomes

/0ðgÞ ¼ � bWW0ðk1; k2Þ; ð48Þ
which, implicitly, defines the parameter g in terms of the stretches.

We define a loading path in ðk1; k2Þ-space as a path starting from ð1; 1Þ on which bWW0 is increasing. As

mentioned by Ogden and Roxburgh (1999a), for many standard forms of strain-energy function bWW0 is

increasing along any straight line path from ð1; 1Þ and contours of constant energy are actually convex in

ðk1; k2Þ-space.

4.1. Uniaxial unloading

On the basis of the equations in Section 3.2.1 the specializations of the above equations for simple

tension areeWW ðk; gÞ ¼ g eWW0ðkÞ þ /ðgÞ; /ð1Þ ¼ 0; ð49Þ
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and, in terms of the Biot stress t,

t ¼ g eWW 0
0 ðkÞ ¼ gt0; ð50Þ

where t0 is the Biot stress on the loading path at the same value of k. For (50) to predict stress softening on
unloading, at the start of which g is switched on, it is clear that we must have g6 1 on the unloading path,

with equality only at the point where unloading begins. Here, as in Ogden and Roxburgh (1999a), we take

g > 0, so that t remains positive on unloading until k ¼ 1 is reached. The occurrence of residual strains is

therefore excluded in the present treatment.

The simple tension specialization of (48) is

/0ðgÞ ¼ � eWW0ðkÞ: ð51Þ
On differentiation of (51) with respect to k we obtain

/00ðgÞ dg
dk

¼ � eWW 0
0 ðkÞ: ð52Þ

In view of the stress softening requirement discussed above we associate unloading with decreasing g. Since
t0 
 eWW 0

0ðkÞ > 0 for k > 1 it follows from (52) that

/00ðgÞ < 0; ð53Þ
and we assume henceforth that this inequality holds. We deduce that /0ðgÞ is a monotonic decreasing

function of g and hence that g is uniquely determined from (51) as a function of eWW0ðkÞ.
It is important to point out that the value of g derived from (51) depends on the value of the principal

stretch, km say, attained on the loading path, as well as on the specific forms of eWW0ðkÞ and /ðgÞ employed.

Since g ¼ 1 at any point on the loading path from which unloading is initiated, it follows from Eqs. (49) and

(51) that

/0ð1Þ ¼ � eWW0ðkmÞ 
 �Wm; ð54Þ
wherein the notation Wm is defined. This is the current maximum value of the energy achieved on the

loading path. In accordance with the properties of eWW0, Wm increases along a loading path. In view of (54),

the function / depends (implicitly) on the point from which unloading begins through the energy expended

on the loading path up to that point.

When the material is fully unloaded, with k ¼ 1, g attains its minimum value, gmin say. This is determined

by inserting these values into Eq. (51) to give, using the first equation in (45),

/0ðgminÞ ¼ � eWW0ð1Þ ¼ 0: ð55Þ
Since the function / depends on the point where unloading begins then so does gmin, that is it depends,

though Wm, on the value of km. The pseudo-energy function (49) has the residual valueeWW ð1; gminÞ ¼ /ðgminÞ: ð56Þ
Thus, the residual (non-recoverable) energy /ðgminÞ may be interpreted as a measure of the energy dissi-
pated in the material during the loading–unloading cycle. In simple tension /ðgminÞ is the area between the

primary loading curve and the relevant unloading curve. It is therefore appropriate to refer to / as a

dissipation function.

Unloading may take place from any point on the loading path, and the start of unloading is taken as the

signal for g to be activated, as mentioned above.

In order to satisfy the above requirements, we select the dissipation function / to have the form

�/0ðgÞ ¼ m tanh�1½rðg � 1Þ
 þ Wm; ð57Þ
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where r and m=l are dimensionless positive material parameters, l being the shear modulus appearing in

(45). Note that this form of /0 differs from that used by Ogden and Roxburgh (1999a). From Eq. (57) we

arrive, after a few minor manipulations, at

1� g ¼ 1

r
tanh

Wm � eWW0ðkÞ
m

" #
: ð58Þ

The minimum value gmin of the variable g is given for k ¼ 1, i.e. in the unstressed configuration, by

gmin ¼ 1� 1

r
tanh

Wm

m

� �
: ð59Þ

Finally, integration of Eq. (57) gives / explicitly in terms of the variable g in the form

/ðgÞ ¼ �mðg � 1Þ tanh�1½rðg � 1Þ
 � Wmðg � 1Þ � m
2r

log½1� r2ðg � 1Þ2
: ð60Þ

4.2. Uniaxial reloading

During unloading the value of g is a monotonic function decreasing from its initial value 1 to its

minimum value gmin. Now, suppose that at a specific value of k, kl say, load reversal occurs, i.e. the material

is again subjected to loading. The corresponding value of g is gl, say, which is kept constant during the

reloading phase. The pseudo-energy function for reloading is taken to have the formeWWrðk; grÞ ¼ gr
eWW0ðkÞ þ /rðgrÞ; ð61Þ

where, for consistency, the variable gr must increase from gl to the final value 1 during reloading and

/rðglÞ ¼ /ðglÞ: ð62Þ

Once this final value gr ¼ 1 is reached the material response switches from the unloading to the loading

path. The subscript �r� is used to emphasize that (61) applies only during reloading.

To satisfy Eq. (26) we must have

/0
rðgrÞ ¼ � eWW0ðkÞ; ð63Þ

which, when evaluated at the start of reloading, gives

/0
rðglÞ ¼ � eWW0ðklÞ: ð64Þ

A suitable expression of a monotonic increasing function to be used for gr, having the same structure as

(58), is

gr

gl

� 1 ¼ ð1� glÞ
gl

tanh
eWW0ðkÞ � eWW0ðklÞ

al

" #
; ð65Þ

where eWW0ðklÞ is the total elastic energy stored in the material at the instant of load reversal and

al ¼ að eWW0ðklÞÞ is a material parameter that reflects the changing material properties as reloading takes place

from the (partially) unloaded configuration back to the loading curve. It is based on a function að eWW0ðklÞÞ of
the energy eWW0ðklÞ. If the hysteretic response is interpreted in terms of recoverable damage then al describes
the recovery process. A short calculation enables the derivative of the dissipation function /r during re-

loading to be given as
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/0
rðgrÞ ¼ � eWW0ðkÞ ¼ � eWW0ðklÞ � al tanh

�1 gr � gl

1� gl

� �
: ð66Þ

Note that /00
r ðgrÞ < 0. Integration of Eq. (66) provides an explicit form for /rðgrÞ, namely

/rðgrÞ ¼ /ðglÞ � ðgr � glÞ eWW ðklÞ � alðgr � glÞ tanh�1 gr � gl

1� gl

� �
� 1

2
alð1� glÞ log 1

"
� ðgr � glÞ

2

ð1� glÞ
2

#
:

ð67Þ

At k ¼ kl, Eqs. (60) and (67) give the same value and hence continuity of the pseudo-energy function is

guaranteed. Eq. (61) with (67) gives the total energy per unit reference volume, i.e. the stored elastic energy

together with the energy dissipated. If during reloading the value of gr becomes 1 then the primary loading

path is rejoined. However, if this value is not reached, a second unloading algorithm must be formulated

and applied.

4.3. Second uniaxial unloading

Material unloading after reloading can be initiated from two different locations. The first one, described

in Section 4.1, assumes that the material response lies on the initial loading path corresponding to g ¼ 1.

The second possibility, which is described here, arises when reloading is terminated before the primary

loading path is reached, at a value gru < 1 of gr. Let kru be the value of k at this point.

We assume that during this secondary unloading process the energy function is given by

eWWuðk; guÞ ¼ gu
eWW0ðkÞ þ /uðguÞ; ð68Þ

where the subscript �u� is associated with unloading following reloading. The energy dissipation is ac-

counted for by the function /uðguÞ, which, for continuity, satisfies

/uðgruÞ ¼ /rðgruÞ: ð69Þ

To satisfy Eq. (51) for the pseudo-energy function (68) we require

/0
uðguÞ ¼ � eWW0ðkÞ; ð70Þ

and at the start of unloading this becomes

/0
uðgruÞ ¼ � eWW0ðkruÞ: ð71Þ

Stress and energy continuity at the transition point requires that the initial value of gu must be gru. We

select the variable gu so that

1� gu

gru

¼ tanh
eWW0ðkruÞ � eWW0ðkÞ

bru

" #
; ð72Þ

where bru ¼ bð eWW0ðkruÞÞ is a material parameter describing the hysteretic effect during the reloading and

secondary unloading cycle. It is based on a function bð eWW0ðkruÞÞ of the loading energy. Again, the structure

of (72) is similar to (58).

The expression of the first derivative of the dissipation function representing secondary unloading is

/0
uðguÞ ¼ � eWW0ðkÞ ¼ bru tanh

�1 gru � gu

gru

� �
� eWW0ðkruÞ: ð73Þ
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Then, after integration, the damage function to be used in expression (68) is obtained in the form

/uðguÞ ¼ /rðgruÞ þ ðgru � guÞ eWW0ðkruÞ � bruðgru � guÞ tanh�1 gru � gu

gru

� �
� 1

2
brugru log 1

"
� ðgru � guÞ

2

g2
ru

#
:

ð74Þ

5. Numerical results

5.1. Experimental data

To assess the inelastic effect during the loading, partial unloading and reloading response of particle-

reinforced elastomers, a series of uniaxial extension tests were carried out at a constant temperature.

Dumbbell specimens were provided by SEMPERIT (Austria) and were used as received. The compound

contains 60 phr of carbon black and is treated as a filled rubber.

The loading, partial unloading and reloading tests were performed at room temperature using a testing

machine designed at the Institute of Physics (Vienna, Austria). A specimen was first subjected to six cycles

of pre-conditioning up to a pre-selected extension of k ¼ 3. Pre-conditioning was performed in order to
eliminate the influence of the Mullins effect and the results are shown in Fig. 1. To measure the longitudinal

strain, two reflection lines (separated by a distance of 4 mm) were drawn in the central part of each

specimen before loading. Changes in the distance between these lines were measured using a video-

extensometer (which ensured the accuracy of about 1%). The tensile force was measured by using a

standard loading cell and the nominal stress was determined as the ratio of the axial force to the cross-

sectional area of a specimen (2 mm� 4 mm) in the stress-free state.
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Fig. 1. Pre-conditioning of a particle-reinforced dumbbell specimen with 60 phr of carbon black.
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After the initial six pre-conditioning loading–unloading cycles the stress strain response is essentially

repeatable and no additional residual strain is generated beyond that produced in the first cycle. After the

pre-conditioning cycles were completed the dumbbell specimen was stretched to k ¼ 3 which was taken as

the starting point for evaluating the response of this compound to partial unloading and reloading. During
the unloading phase, reloading is initiated at four different locations (see Fig. 2), corresponding to stretches

of k ¼ 2:5, k ¼ 2:0, k ¼ 1:5 and k ¼ 1:0. It is interesting to note that, independently of the number of cycles

to which the material is subjected, the reloading curve from k ¼ 1 follows the post–pre-conditioning

loading curve. In Fig. 2 the residual strain accumulated during pre-conditioning has been subtracted in

order for the graphs to be initiated at the origin. Therefore, the stretches where load reversal occurs are

somewhat shifted to the left.

5.2. Material models

For the numerical results shown in this section the elastic strain energy suggested by Ogden (1972) has

been used

W ðk1; k2; k3Þ ¼
XN
m¼1

lmðkam
1 þ kam

2 þ kam
3 � 3Þ=am; ð75Þ

where am and lm are material constants to be determined by experiment and N is a positive integer. Most
commonly N equals 3. For the simple tension and compression specialization equations (18) apply and the

strain-energy function W 0ðkÞ is given by

eWW0ðkÞ ¼
XN
m¼1

lmðkam þ 2k�am=2 � 3Þ=am: ð76Þ

Fig. 2. Experimental data for partial reloading–unloading from the unloading path in simple tension of a rubber compound with 60 phr

carbon black: nominal stress plotted against stretch.
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A subscript 0 has been attached to eWW since we now use eWW0ðkÞ to describe the loading path in simple tension.

It follows that

t ¼ t1 ¼
XN
m¼1

lmðkam � k�1=2amÞ: ð77Þ

The constants must satisfy the requirement

XN
m¼1

lmam ¼ 2l; ð78Þ

where l ð> 0Þ is the shear modulus of the material in the natural configuration.
The non-linear iterative method known as the Levenberg–Marquardt algorithm (see, for example,

Twizell and Ogden, 1983) is used for calculating the li and ai ði ¼ 1; 2; 3Þ in order to obtain a best fit of the

primary loading curve shown in Fig. 2. These values are summarized in Table 1 and characterize the elastic

strain energy in Eq. (75). Numerical results for loading, partial unloading and reloading are shown in Fig.

3. After initial loading up to k ¼ 3, unloading is initiated and the algorithm uses the formulations developed

Table 1

Summary of model parameters for loading curve of the 60 phr compound

Material model parameter, Ogden N ¼ 3

l1 a1 l2 a2 l3 a3

)0.1680E)4 )12.0428 )0.5146 )4.4038 0.1722E)5 14.2651
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Fig. 3. Theoretical prediction of simple tension partial reloading–unloading behaviour using a pseudo-energy function: nominal stress

plotted against stretch.
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in Section 4.1. The parameters r and m in Eq. (58) are given as 3.3 (dimensionless) and 0.3 Nmm, re-

spectively. The pseudo-energy during unloading, given by Eq. (49), is fully determined using Eqs. (58), (76)
and (60) and is depicted in Fig. 4. This figure shows the increase in energy during initial loading up to the

instant of load reversal and it illustrates that during unloading the energy returned is less than that ex-

pended during loading, which is a consequence of the dissipation of energy due to hysteresis.

At the end of the first (partial) unloading path, at a stretch of about k ¼ 2:4, the material is reloaded up

to the maximum extension. This reloading is modelled using the equations given in Section 4.2. Note from

Fig. 3 that the initial loading curve has not been reached and the subsequent unloading curve is modelled

on the basis of the equations in Section 4.3. A similar discussion applies for the other two reloading–

unloading cycles shown in Fig. 3. In this representative example it was found sufficient to take
bru ¼ bð eWW0ðkruÞÞ to be constant (¼ 0.4 Nmm), i.e. the same value for each of the three unloading curves,

while að eWW0ðklÞÞ is represented simply by að eWW0ðklÞÞ ¼ c0 þ c1 eWW0ðklÞ, where c0 ¼ 0:2227 Nmm, c1 ¼ 0:3723,
kl being the value of k at which reloading begins (different for each reloading path).

Continuity of the pseudo-energy at the transition points between unloading and reloading can be seen in

Fig. 4. This figure also illustrates the extent of energy dissipation during cyclic loading and unloading. On

each reloading–unloading cycle after partial unloading energy is dissipated and the energy returned on

complete unloading is less than the energy expended during loading/reloading. The energy dissipated in-

creases with each reloading–unloading cycle.

6. Discussion and conclusions

In this paper the theory of pseudo-elasticity, originally developed by Ogden and Roxburgh (1999a) to
account for the Mullins effect, has been modified to develop a constitutive model for quasi-static loading,
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Fig. 4. Plot of the pseudo-energy function against the stretch during loading, unloading, reloading and unloading (continuous curves),

showing continuity at the transition between (re)loading and unloading. The dashed curves correspond to complete unloading after

each (re)loading. Their intercepts with the vertical axis quantify the energy dissipated, which increases with each reloading.
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partial unloading, reloading and subsequent unloading of a rubber material with hysteretic response. The

theory uses a deformation-dependent scalar parameter to modify the elastic strain-energy function to ac-

count for the change in material properties under large strains. A number of material parameters are in-

cluded in the model to enable the fitting of simple tension data obtained. The dissipative character of the
material is accounted for within the energy function by an additive dissipation term.

The suitability of the theory has been demonstrated for a particle-reinforced rubber (filled with 60 phr of

carbon black) in the simple case of uniaxial cyclic loading and unloading in tension. However, the for-

mulation presented here is also applicable to general (three-dimensional) deformations. The model does not

allow for permanent set, the effect of which will be incorporated into the model in a separate paper.
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