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Abstract

Particle-reinforced rubbers exhibit a marked stress softening during unloading after loading in uniaxial tension tests,
i.e. the stress on unloading is significantly less than that on loading at the same stretch. This hysteretic behaviour is not
accounted for when the mechanical properties are represented in terms of a strain-energy function, i.e. if the material is
modelled as hyperelastic. In this paper a theory of pseudo-elasticity is used to model loading, partial or complete un-
loading and the subsequent reloading and unloading of reinforced rubber. The basis of the model is the inclusion in the
energy function of a variable that enables the energy function to be changed as the deformation path changes between
loading, partial unloading, reloading and any further unloading. The dissipation of energy, i.e. the difference between
the energy input during loading and the energy returned on unloading is accounted for in the model by the use of a
dissipation function, the form of which changes between unloading, reloading and subsequent unloading.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

During the last decade there has been a considerable growth in interest in modelling the mechanical
response of rubbery polymers, and more particularly of particle-filled rubbers. This interest has been
stimulated by numerous industrial applications of rubbers (vibration isolators, vehicle tyres, seals and
shock absorbers, for example) and the availability of computational facilities suitable for running complex
models in finite element software.

Many contributions have aimed to model inelastic behaviour of rubber such as the stress softening
associated with the Mullins effect. These are mainly rate and time-independent models based on the use of
damage theory. Representative examples of these works are the papers by Govindjee and Simo (1991,
1992a,b), extended to allow for viscoelasticity (1992b), Johnson and Beatty (1993, 1995), Lion (1996),
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Huntley et al. (1997), Kaliske and Rothert (1998), Ogden and Roxburgh (1999a,b), Beatty and
Krishnaswamy (2000) and Dorfmann et al. (2002). There are also many contributions dealing with time
and/or rate effects and stress—strain cycling involving hysteresis. Representative works from a lengthy list
include Johnson et al. (1995), Drozdov (1996), Drozdov and Dorfmann (2001), Ha and Schapery (1998),
Reese and Govindjee (1998), Bergstrom and Boyce (1998, 2000), Miehe and Keck (2000), Wu and Liechti
(2000) and Yang et al. (2000). The collections of papers contained in the proceedings of the first two
European conferences on constitutive models for rubber are also valuable sources of reference: Dorfmann
and Muhr (1999) and Besdo et al. (2001). Both phenomenological and micro-structural models are rep-
resented in these contributions and for more detailed references we refer to the above-cited works.

The present paper focuses on the guasi-static modelling of the inelastic response of particle-reinforced
rubber. In particular, we are concerned with the hysteretic cycles associated with partial unloading and
reloading (at constant temperature) following loading after appropriate pre-conditioning aimed at elimi-
nating the Mullins effect. Our starting point is the pseudo-elasticity theory of Ogden and Roxburgh (1999a),
which was used to model the Mullins effect. It is adapted so as to model the hysteretic cycles mentioned
above. While the theory is applicable to three-dimensional deformations, the details are described primarily
for the simple tension specialization. Simple tension experiments on a 60 phr carbon black-filled rubber
have been performed for loading, partial unloading, reloading and subsequent unloading in order to test
the theory.

The paper is organized as follows. In Section 2 we summarize the required equations of non-linear
elasticity, first for three dimensions and then for the appropriate homogeneous uniaxial specialization. In
Section 3 the corresponding theory of pseudo-elasticity is outlined. In Section 4, first the specific model of
Ogden and Roxburgh (1999a), with some modification, is reviewed and then adapted so as to capture the
partial unloading-reloading—unloading response. Section 5.1 contains a brief discussion of the experimental
results that are used as the basis for fitting the model. The elastic strain-energy function employed for
describing the loading response (after pre-conditioning) is given in Section 5.2, and then the theory of
Section 4 is used to fit the actual data.

2. Basic equations

For full details of the relevant theory of elasticity summarized in this section the reader is referred to, for
example, Ogden (1984, 2001) and Holzapfel (2000).

We consider a rubberlike solid whose deformation is completely described by the deformation gradient
tensor F. The polar decompositions of the deformation gradient gives

F = RU = VR, (1)

where R is a proper orthogonal tensor and U, V are positive definite and symmetric tensors (the right and
left stretch tensors, respectively).
The spectral decomposition of the right stretch tensor U gives

3
U= Zli“(” @u, (2)

i=1

where the principal stretches 4; > 0, i € {1,2,3}, are the eigenvalues of U, u”) are the (unit) eigenvectors,
and ® denotes the tensor product. From the incompressibility condition det F = 1 and from (1) and (2) it
follows that

Mdads = 1. (3)
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2.1. Hyperelasticity

For hyperelastic solids there exists a strain-energy function, denoted W = W (F). The associated nominal
stress tensor for incompressible elastic material, denoted S, is then given by
ow
S=——pF' detF=1 4
oF 7o ’ )
where p is a Lagrange multiplier associated with the constraint (3) and represents an arbitrary hydrostatic
pressure. The Cauchy stress tensor ¢ is given by

ow
¢ =FS aF —Fb det , (5)

where I is the identity tensor.
The elastic stored energy is required to be objective. Therefore, for all rotations Q we have

W(QF) = W(F). (6)
Using the polar decomposition (1) and the choice Q = RT in (6) gives
W(F) = w(U). ()

Thus, W depends on F only through the stretch tensor U. The (symmetric) Biot stress tensor T is then
defined by
ow

T=-— —pU! =1.
U pU", detU (8)

2.1.1. Isotropic hyperelasticity
We now consider isotropic elastic materials, for which we have the restriction
W(FQ) = W(F) )

for all rotations Q. Bearing in mind that the Q’s appearing in (6) and (9) are independent the combination
of these two equations yields

w(QUQ') = w(U) (10)

for all rotations Q, or, equivalently, W (QVQ") = W (V). Eq. (10) states that ¥ is an isotropic function of
U. It follows from the spectral decomposition (2) that W depends on U only through the principal stretches
/1,22, A3. To avoid introducing additional notation we express this dependence as W (1, 4, 43); by selecting
appropriate values for Q in (10) we may deduce that W depends symmetrically on i, 4,, /3, i.e.

W (A, 2oy 23) = W (A, 23, 22) = W (A2, A1, A3). (11)

Consequences of isotropy are that S = TR" and that T is coaxial with U and hence, in parallel with (2),
we have

3
T= Z ta? @u, (12)
i1
where #;, i € {1,2,3}, are the principal Biot stresses, given by
ow _
=g —pit il =1 (13)

We also note the connection between the Cauchy stress and T in the form

3
R'GR=UT=TU =) jitu" u?, (14)

i=1
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from which it follows that the principal Cauchy stresses a,, i € {1,2,3}, are given by

oW
Ui*/liti*/biai&_pa (15)

where p is the arbitrary hydrostatic pressure appearing in (4). There is no sum over i in (15).

2.1.2. Simple tension and compression

The isotropic strain-energy function W depends on the principal stretches according to (11). On use
of the incompressibility constraint (3), it can be written in terms of two independent stretches. Thus, we
write

W (I, 2a) = W(hi, 2,075 ), (16)
which is symmetric in A; and A4,. Then, from (15) we obtain the Cauchy stress differences
ow ow

0'1—0'32116—)%, 0'2—0'32116—/12. (17)

Egs. (17) provide a basis for characterizing the form of the energy function using biaxial tests in which 4,
and 4, are varied independently. For this purpose and without loss of generality we can set a3 equal to zero.
For the simple tension (or compression) specialization we take 4, = /3, and use the notation

=2 =" (18)
The strain energy then depends on the one remaining independent stretch, and we write
W) =w(, i (19)

Then, the Cauchy stress associated with 4, is

dW(2)
=g =j— 20
o=01=i—p (20)
and the corresponding nominal (or Biot) stress is
o dw(l)
i@ @

3. Pseudo-elasticity
3.1. Basic equations

In the theory of pseudo-elasticity developed by Ogden and Roxburgh (1999a) the strain-energy function
W (F) appropriate for elasticity theory is modified by incorporating an additional variable 5 into the
function. Thus, we write

W = W(F,n). (22)

In the context of the Mullins effect, which is related to material damage, # is referred to as a damage or
softening variable. The inclusion of # provides a means of changing the form of the energy function during
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the deformation process and hence changing the character of the material properties. In general, the overall
response of the material is then no longer elastic and W (F, n) is referred to as a pseudo-energy function. The
resulting theory is referred to as pseudo-elasticity theory. In this section we summarize the main ingredients
of the theory.
The variable # may be active or inactive and a change from active to inactive (or conversely) effects a
change in the material properties. This change may be induced, for example, when unloading is initiated.
If n is inactive we set it to the constant value unity and write

Wo(F) = W(F, 1) (23)

for the resulting strain-energy function. For an incompressible material the associated nominal stress is

denoted S, and is given by

_aw

~ OF

In (24) and in what follows the zero subscript is associated with the situation in which # is inactive.
If 5 is active we take it to depend on F. The nominal stress is then given by

ow ow on
S*afF(FJ?)*a( ”7)67F

S (F) —poF', detF=1. (24)

(F) —pF~', detF=1. (25)

Following Ogden and Roxburgh (1999a) we take 5 to be given implicitly by the constraint

ow
Z(F.n) =0 26
5 (1) (26)
so that the nominal stress then has the form
)
S:a—;V(F,n)—pF’l, detF=1 (27)

whether or not 5 is active, where, when 7 is active the right-hand side is evaluated for # given by (26).

Under the constraint det F = 1, Eq. (26) defines a hypersurface in the resulting nine-dimensional (F, 7)-
space to which values of # must be restricted. The hypersurface (26) identifies stationary points of W (F,n)
with respect to #. If # is defined uniquely in terms of F we may write the solution formally as

n = n.(F), (28)
and we then use the notation w for the resulting (unique) strain-energy function. Thus,
w(F) = W(F,n.(F)). (29)

Thus far we have not specified the form of the dependence of W on 7, or, more particularly, the form of
the function 7. (F) in (28), i.e. we have not specified a particular model within the general framework of
pseudo-elasticity. Appropriate specification will be made in Section 4.

3.2. Isotropic material response
When specialized to isotropic response (relative to the selected reference configuration) the pseudo-
elastic energy function (22) takes the form
W (41, 22, 23,1), (30)

where (11, 42, 43) are the principal stretches associated with the deformation from the reference configu-
ration. As in Section 2.1.1, W is a symmetric function of the stretches, which are subject to the incom-
pressibility constraint (3).
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The principal Cauchy stresses g; are given by

)
O-i:/li_W_pa 16{17273}7 (31)
04
as in (15), but (31) applies whether or not 5 is active. Eq. (26) specializes to
ow .
a_n(/“hj'bi%y,) :07 (32)

which gives n implicitly in terms of the stretches.
Since the material is incompressible it is convenient to define the modified pseudo-energy function

~

W (A1, 22,n) by

W (Ja, dayn) = Wi, o, 225" ), (33)
extending the notation used in (16). Then, on elimination of p from (31),

01—032/11[/7/17 02—03212[’/1\/27 (34)

where #; and W, denote the partial derivatives of W with respect to 4; and 4, respectively. Eq. (32) is then
modified to
ow
o

and hence 7 is now given implicitly in terms of /; and 7, only.
We define the function W,(4,4,) via

(A1, 42,1) =0 (35)

Wo(h1,70) = W(J1, 70, 1), (36)

which is the isotropic specialization of (23). This is the energy function of an elastic material for which 7 is
inactive. From (34) the specialization (36) yields the stresses

oo — 003 = A V%l, O — 003 = Ao VAVO2, (37)

where the subscript zero again refers to a deformation path on which 7 is not active and (35) is not ope-
rative. A subscript 1 (respectively 2) following the subscript 0 on W indicates partial differentiation with
respect to A; (respectively 1,). R

For compatibility with the classical theory (4, 4,) must satisfy

Wo(1,1) =0, Wou(1,1) =0, Wona(1,1) =2, Wos(1,1) = 4y, (38)

where p (> 0) is the shear modulus of the material in the reference configuration and the index « takes the
value 1 or 2.

When 7 is active we suppose that Eq. (35) can be solved explicitly for # and, using the notation from (28),
we write

n= ne(/lh;“z) = ’75(}"27/11)' (39)

Then, an energy function for active x, symmetrical in (4, 4,) and denoted w(4;, 4,), may be defined by
Wi, A2) = I’AV(il,izv’?e(}»l,iz))- (40)
From Eqgs. (34), (35) and (40) it follows that

Oy — 03 = Ay OW/00y = A, 0W [0y, a=1,2. (41)
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3.2.1. Simple tension
As in Section 2.1.2, for simple tension we take o, = 63 = 0 and write o, = 6. We also write 4; = 4, so
that 1, = 43 = A7, and define W by

W (2,n) = W0~ n). (42)
Egs. (41) and (35) then specialize to
o= IWi(0n) =i, Wy(dn) =0, (43)

wherein the principal Biot stress ¢ (= #;) is defined and the subscripts signify partial derivatives.
By defining

Wo(2) = W (2,1), (44)
we may deduce from (38) the specializations
Wo(1) = Wy(1) =0, W(1) =3y, (45)

where the prime signifies differentiation with respect to A.
This simple tension specialization will be examined in detail in connection with the description of stress
softening in Section 4.

4. A model for unloading and reloading

In this section we use a simple form for the pseudo-elastic constitutive law that was used previously by
Ogden and Roxburgh (1999a) to model the idealized Mullins effect. Here, however, it is assumed that the
Mullins effect is not present (having been removed by pre-conditioning) and we are concerned with
modelling the hysteresis associated with loading—unloading cycles, and more particularly with partial un-
loading and reloading. The material is again taken to be incompressible and isotropic and we use a pseudo-
energy function to represent unloading in the form

W (i, dasm) = W, ) + (), $(1) =0, (46)
based on (i, 4)-space. From (37), (41) and (46), the Cauchy stress differences are calculated as

0, — 03 = iy Woy = n(00, — 003), % =1,2, (47)
and Eq. (35) becomes

¢'(n) = —I’AI’()(M,iz), (48)

which, implicitly, defines the parameter # in terms of the stretches.

We define a loading path in (4, 4,)-space as a path starting from (1,1) on which ¥, is increasing. As
mentioned by Ogden and Roxburgh (1999a), for many standard forms of strain-energy function Wy is
increasing along any straight line path from (1, 1) and contours of constant energy are actually convex in
(41, 42)-space.

4.1. Uniaxial unloading

On the basis of the equations in Section 3.2.1 the specializations of the above equations for simple
tension are

W () = nWo(2) + ¢(n), ¢(1) =0, (49)
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and, in terms of the Biot stress ¢,
t = nWy(2) = nto, (50)

where #, is the Biot stress on the loading path at the same value of 1. For (50) to predict stress softening on
unloading, at the start of which # is switched on, it is clear that we must have # <1 on the unloading path,
with equality only at the point where unloading begins. Here, as in Ogden and Roxburgh (1999a), we take
n > 0, so that ¢ remains positive on unloading until 4 = 1 is reached. The occurrence of residual strains is
therefore excluded in the present treatment.

The simple tension specialization of (48) is

¢'(n) = —Wo(4). (51)
On differentiation of (51) with respect to 4 we obtain
" d77 _ o
8" 3 = Wy (). (52)

In view of the stress softening requirement discussed above we associate unloading with decreasing #. Since
ty = W,(4) > 0 for 4 > 1 it follows from (52) that

¢"(n) <0, (53)

and we assume henceforth that this inequality holds. We deduce that ¢'(n) is a_monotonic decreasing
function of 5 and hence that # is uniquely determined from (51) as a function of W(4).

It is important to point out that the value of n derived from (51) depends on the value of the principal
stretch, 4,, say, attained on the loading path, as well as on the specific forms of W,;(4) and ¢(#) employed.
Since n = 1 at any point on the loading path from which unloading is initiated, it follows from Eqgs. (49) and
(51) that

(,25,(1) = 7%(’%1) = 7VVm; (54)

wherein the notation W, is defined. This is the current maximum value of the energy achieved on the
loading path. In accordance with the properties of W, W, increases along a loading path. In view of (54),
the function ¢ depends (implicitly) on the point from which unloading begins through the energy expended
on the loading path up to that point.

When the material is fully unloaded, with 4 = 1, y attains its minimum value, 7,,;, say. This is determined
by inserting these values into Eq. (51) to give, using the first equation in (45),

¢,(nmin) = _ﬁ/()(l) = 0. (55)

Since the function ¢ depends on the point where unloading begins then so does #,,,,, that is it depends,
though #,,, on the value of 4,. The pseudo-energy function (49) has the residual value

W(lvnmin) = qs(’/]min)' (56)
Thus, the residual (non-recoverable) energy ¢(1,,;,,) may be interpreted as a measure of the energy dissi-
pated in the material during the loading—unloading cycle. In simple tension ¢(n,,;,) is the area between the
primary loading curve and the relevant unloading curve. It is therefore appropriate to refer to ¢ as a
dissipation function.

Unloading may take place from any point on the loading path, and the start of unloading is taken as the
signal for 5 to be activated, as mentioned above.
In order to satisfy the above requirements, we select the dissipation function ¢ to have the form

~¢'(n) = mtanh™ [r(n — 1)] + W,,, (57)
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where r and m/u are dimensionless positive material parameters, p being the shear modulus appearing in
(45). Note that this form of ¢’ differs from that used by Ogden and Roxburgh (1999a). From Eq. (57) we
arrive, after a few minor manipulations, at

== an [w] (58)
r m

The minimum value #,;, of the variable 7 is given for A = 1, i.e. in the unstressed configuration, by

N = 1 ! tanh {Wm] (59)

r m
Finally, integration of Eq. (57) gives ¢ explicitly in terms of the variable # in the form
_ m
$(n) = —m(n — 1) tanh ™" [r(n — 1)] = W, (n = 1) = 5 logl = r*( — 1)°). (60)

4.2. Uniaxial reloading

During unloading the value of # is a monotonic function decreasing from its initial value 1 to its
minimum value #,,;,. Now, suppose that at a specific value of 4, 4, say, load reversal occurs, i.e. the material
is again subjected to loading. The corresponding value of # is #;, say, which is kept constant during the
reloading phase. The pseudo-energy function for reloading is taken to have the form

VVF()H nr) =1 ﬁ/()()‘) + ¢r(’7r)7 (61)
where, for consistency, the variable #, must increase from #, to the final value 1 during reloading and
b (m) = ¢(m). (62)

Once this final value n, = 1 is reached the material response switches from the unloading to the loading
path. The subscript ‘r’ is used to emphasize that (61) applies only during reloading.
To satisfy Eq. (26) we must have

¢r(n,) = —Wo(2), (63)
which, when evaluated at the start of reloading, gives
br(m) = —Wo( ). (64)

A suitable expression of a monotonic increasing function to be used for #,, having the same structure as
(58), is

m 1= (1 B ’71) tanh VAI//O(/“) - If/vV()(JVl) (65)
m m a 7

where Ef/o()q) is the total elastic energy stored in the material at the instant of load reversal and
ay = a(Wy(41)) is a material parameter that reflects the changing material properties as reloading takes place
from the (partially) unloaded configuration back to the loading curve. It is based on a function a(Wy(41)) of
the energy W, (4 ). If the hysteretic response is interpreted in terms of recoverable damage then «; describes
the recovery process. A short calculation enables the derivative of the dissipation function ¢, during re-
loading to be given as
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0 = ~T4(7) = = Fal) ~ artant " | =11, (66)

Note that ¢! (n,) < 0. Integration of Eq. (66) provides an explicit form for ¢,(n,), namely

9.(1,) = $(m) = (1, = m) W (22) = a(n, — ) tanh " [H] — a1~ ) log [1 - %] .
1 -

(67)

At 4 =1, Egs. (60) and (67) give the same value and hence continuity of the pseudo-energy function is
guaranteed. Eq. (61) with (67) gives the total energy per unit reference volume, i.e. the stored elastic energy
together with the energy dissipated. If during reloading the value of 1, becomes 1 then the primary loading
path is rejoined. However, if this value is not reached, a second unloading algorithm must be formulated
and applied.

4.3. Second uniaxial unloading

Material unloading after reloading can be initiated from two different locations. The first one, described
in Section 4.1, assumes that the material response lies on the initial loading path corresponding to n = 1.
The second possibility, which is described here, arises when reloading is terminated before the primary
loading path is reached, at a value #,, < 1 of n,. Let 4,, be the value of A at this point.

We assume that during this secondary unloading process the energy function is given by

I/Ff/u(ﬂvv nu) =My I/’Iv/()(z) + ¢u(7lu)7 (68)

where the subscript ‘0’ is associated with unloading following reloading. The energy dissipation is ac-
counted for by the function ¢,(n,), which, for continuity, satisfies

Gu(r) = & (11)- (69)
To satisfy Eq. (51) for the pseudo-energy function (68) we require
¢ (n.) = —To(2), (70)
and at the start of unloading this becomes
G (1) = = Wo(ra)- (71)

Stress and energy continuity at the transition point requires that the initial value of n, must be #,,. We
select the variable 7, so that

1- 1’77_ — tanh [—W"(M“)b_ W"(A)] , (72)

where bn, = b(Wy(/ry)) is a material parameter describing the hysteretic effect during the reloading and
secondary unloading cycle. It is based on a function b(Wy(/y)) of the loading energy. Again, the structure
of (72) is similar to (58).

The expression of the first derivative of the dissipation function representing secondary unloading is

$L(1) = —o(2) = by tanh™" V%] o). (73)
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Then, after integration, the damage function to be used in expression (68) is obtained in the form

nru ru

~ ., - ru 'l 1 e~ T ?
d)u(nu) = ¢r(7’ru) + (nru - nu) VVO(/LFU) - bl‘u(’/lru - nu) tanh : |:’1n:| - Ebrunru IOg [1 B (;72’1)‘| '

(74)

5. Numerical results
5.1. Experimental data

To assess the inelastic effect during the loading, partial unloading and reloading response of particle-
reinforced elastomers, a series of uniaxial extension tests were carried out at a constant temperature.
Dumbbell specimens were provided by SEMPERIT (Austria) and were used as received. The compound
contains 60 phr of carbon black and is treated as a filled rubber.

The loading, partial unloading and reloading tests were performed at room temperature using a testing
machine designed at the Institute of Physics (Vienna, Austria). A specimen was first subjected to six cycles
of pre-conditioning up to a pre-selected extension of A = 3. Pre-conditioning was performed in order to
eliminate the influence of the Mullins effect and the results are shown in Fig. 1. To measure the longitudinal
strain, two reflection lines (separated by a distance of 4 mm) were drawn in the central part of each
specimen before loading. Changes in the distance between these lines were measured using a video-
extensometer (which ensured the accuracy of about 1%). The tensile force was measured by using a
standard loading cell and the nominal stress was determined as the ratio of the axial force to the cross-
sectional area of a specimen (2 mm x 4 mm) in the stress-free state.

Rubber Compound 60 phr of Carbon Black

T

7 T

Nominal Stress (N/mmz)

0 i i i i i i i i i

1 12 14 16 18 2 22 24 26 28 3
Stretch

Fig. 1. Pre-conditioning of a particle-reinforced dumbbell specimen with 60 phr of carbon black.
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After the initial six pre-conditioning loading—unloading cycles the stress strain response is essentially
repeatable and no additional residual strain is generated beyond that produced in the first cycle. After the
pre-conditioning cycles were completed the dumbbell specimen was stretched to 4 = 3 which was taken as
the starting point for evaluating the response of this compound to partial unloading and reloading. During
the unloading phase, reloading is initiated at four different locations (see Fig. 2), corresponding to stretches
of A=2.5,1=20,4A=1.5and 2 = 1.0. It is interesting to note that, independently of the number of cycles
to which the material is subjected, the reloading curve from 4 =1 follows the post—pre-conditioning
loading curve. In Fig. 2 the residual strain accumulated during pre-conditioning has been subtracted in
order for the graphs to be initiated at the origin. Therefore, the stretches where load reversal occurs are
somewhat shifted to the left.

5.2. Material models

For the numerical results shown in this section the elastic strain energy suggested by Ogden (1972) has
been used

N
)17/“27 Z /‘{“m + 4 ﬂxm M’Xm - )/ann (75)

where «,, and pu, are material constants to be determined by experiment and N is a positive integer. Most
commonly N equals 3. For the simple tension and compression specialization equations (18) apply and the
strain-energy function W,(4) is given by

Zum 4257~ 3) [, (76)

Loading - Unloading on Rubber Compound with 60 phr
Carbon Black

4 T T T T T T T T T

251 . . : .

151 1

Nominal Stress (N/mmz)
N

0.5 1
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Fig. 2. Experimental data for partial reloading—unloading from the unloading path in simple tension of a rubber compound with 60 phr
carbon black: nominal stress plotted against stretch.
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A subscript 0 has been attached to W since we now use VT/O(/I) to describe the loading path in simple tension.
It follows that

N

t=t =Y g, (=i, (77)

m=1

The constants must satisfy the requirement

N
m=1

where p (> 0) is the shear modulus of the material in the natural configuration.

The non-linear iterative method known as the Levenberg-Marquardt algorithm (see, for example,
Twizell and Ogden, 1983) is used for calculating the &, and o, (i = 1,2, 3) in order to obtain a best fit of the
primary loading curve shown in Fig. 2. These values are summarized in Table 1 and characterize the elastic
strain energy in Eq. (75). Numerical results for loading, partial unloading and reloading are shown in Fig.
3. After initial loading up to 4 = 3, unloading is initiated and the algorithm uses the formulations developed

Table 1
Summary of model parameters for loading curve of the 60 phr compound

Material model parameter, Ogden N = 3

I oy Hy 0 H3 o3
—0.1680E—-4 —12.0428 -0.5146 —4.4038 0.1722E-5 14.2651

Loading -Unloading on Rubber Compound
with 60 phr Carbon Black

35}

N
Cl
T

Nominal Stress (N/mmz)
=
(5] N

05

1 12 14 16 18 2 22 24 26 28 3
Stretch

Fig. 3. Theoretical prediction of simple tension partial reloading—unloading behaviour using a pseudo-energy function: nominal stress
plotted against stretch.
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Loading- Unloading on Rubber Compound with
60 phr Carbon Black
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Fig. 4. Plot of the pseudo-energy function against the stretch during loading, unloading, reloading and unloading (continuous curves),
showing continuity at the transition between (re)loading and unloading. The dashed curves correspond to complete unloading after
each (re)loading. Their intercepts with the vertical axis quantify the energy dissipated, which increases with each reloading.

in Section 4.1. The parameters » and m in Eq. (58) are given as 3.3 (dimensionless) and 0.3 Nmm, re-
spectively. The pseudo-energy during unloading, given by Eq. (49), is fully determined using Egs. (58), (76)
and (60) and is depicted in Fig. 4. This figure shows the increase in energy during initial loading up to the
instant of load reversal and it illustrates that during unloading the energy returned is less than that ex-
pended during loading, which is a consequence of the dissipation of energy due to hysteresis.

At the end of the first (partial) unloading path, at a stretch of about A = 2.4, the material is reloaded up
to the maximum extension. This reloading is modelled using the equations given in Section 4.2. Note from
Fig. 3 that the initial loading curve has not been reached and the subsequent unloading curve is modelled
on the basis of the equations in Section 4.3. A similar discussion applies for the other two reloading—
unloading cycles shown in Fig. 3. In this representative example it was found sufficient to take
by = b(Wy(/ru)) to be constant (=0.4 Nmm), i.e. the same value for each of the three unloading curves,
while a(W;(4)) is represented simply by a(Wy(4)) = ¢y + ¢1 Wy(41), where ¢y = 0.2227 Nmm, ¢; = 0.3723,
A being the value of 4 at which reloading begins (different for each reloading path).

Continuity of the pseudo-energy at the transition points between unloading and reloading can be seen in
Fig. 4. This figure also illustrates the extent of energy dissipation during cyclic loading and unloading. On
each reloading—unloading cycle after partial unloading energy is dissipated and the energy returned on
complete unloading is less than the energy expended during loading/reloading. The energy dissipated in-
creases with each reloading—unloading cycle.

6. Discussion and conclusions

In this paper the theory of pseudo-elasticity, originally developed by Ogden and Roxburgh (1999a) to
account for the Mullins effect, has been modified to develop a constitutive model for quasi-static loading,
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partial unloading, reloading and subsequent unloading of a rubber material with hysteretic response. The
theory uses a deformation-dependent scalar parameter to modify the elastic strain-energy function to ac-
count for the change in material properties under large strains. A number of material parameters are in-
cluded in the model to enable the fitting of simple tension data obtained. The dissipative character of the
material is accounted for within the energy function by an additive dissipation term.

The suitability of the theory has been demonstrated for a particle-reinforced rubber (filled with 60 phr of
carbon black) in the simple case of uniaxial cyclic loading and unloading in tension. However, the for-
mulation presented here is also applicable to general (three-dimensional) deformations. The model does not
allow for permanent set, the effect of which will be incorporated into the model in a separate paper.
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